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The goal of this work was to design and implement a
prototype software tool for the visualization and analysis
of small molecule metabolite GC-MS and LC-MS data
for biomarker discovery. The key features of the Metabo-
lite Differentiation and Discovery Lab (MeDDL) software
platform include support for the manipulation of large
data sets, tools to provide a multifaceted view of the
individual experimental results, and a software architec-
ture amenable to modification and addition of new algo-
rithms and software components. The MeDDL tool, through
its emphasis on visualization, provides unique opportuni-
ties by combining the following: easy use of both GC-MS
and LC-MS data; use of both manufacturer specific data
files as well as netCDF (network Common Data Form);
preprocessing (peak registration and alignment in both
time and mass); powerful visualization tools; and built in
data analysis functionality.

Metabolomics is a rapidly growing field used to characterize
the metabolic profile of a specific tissue or biofluid. Metabolic
profiling, originally pioneered by Jeremy Nicholson, Elaine
Holmes, and John Lindon at the Imperial College in London1

utilizing nuclear magnetic resonance (NMR) based analysis, has
evolved to become one of the most common applications of liquid
chromatography mass spectrometry (LC-MS).2-4 Metabolomics
is an attractive approach to the study of time-related quantitative
multivariate metabolic responses to pathophysiological processes
by which biological and chemical agents, e.g., drugs, can cause

perturbations in the concentrations and flux of endogenous
metabolites involved in critical cellular pathways.5 Thus, cells
respond to toxic insult or other stressors by altering their intra-
and/or extra-cellular environment in an attempt to maintain a
homeostatic intracellular environment.

This metabolic alteration is expressed as a “fingerprint” of
biochemical perturbations characteristic of the type and target of
a toxic insult or disease process.6 These metabolic alterations are
often seen in body fluids as changes in metabolic profiles in
response to toxicity or disease, as the body attempts to maintain
homeostasis by eliminating substances from the body. Therefore,
because many biofluids can be easily obtained either noninvasively
(urine) or minimally invasively (blood), they are typically used in
metabolomic studies.7 Additionally, if a significant number of trace
molecules can be identified and monitored, the overall pattern
produced may be more consistent and predictive than any single
biomarker,8 which would prove of great value in the development
of deployable devices for testing toxic or infectious exposures.

Current LC-MS systems typically consist of a system of
specialized instrumentation with customized support software.
This software is generally proprietary, being supplied by the
instrument manufacturer and designed to facilitate user interaction
with the analytical hardware. Most LC-MS manufacturers also
market add-on commercial software packages for the analysis of
the results of LC-MS experiments, which are generally designed
to provide a very specific type of data analysis (i.e., proteomic or
metabolomic) and cannot be readily modified or added to by the
end-user. For larger metabolomic biomarker discovery studies,
such as the LC-MS effort initiated by our laboratory for profiling
low level exposure to environmental toxicants, none of the
software solutions available at the time offered the ability to
compare multiple time point and dosage groups, or handle data
sets in significant sample numbers (>100 samples in duplicate).
This bottleneck in data handling initiated the development of the
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MeDDL tool described below, allowing us to differentiate me-
tabolite profiles in a large time-dose study and facilitating the
ability to visualize exposure data for a global view of an entire
chemical-exposure set while maintaining the ability to focus on
individual metabolites and spectra for subsequent identification.

To illustrate the novel visualization and rapid multisample
analysis capability of MeDDL for discovery of metabolomic
biomarkers, data from a portion of this study examining environ-
mental toxicant exposure have been selected. Environmental
exposures to toxins as well as therapeutic interventions often cause
nephrotoxicity.9 An expanded list of metabolites indicating kidney
damage would be immensely helpful in the monitoring of renal
conditions after exposure to external toxicants, not only in
pharmaceutical drug safety evaluations and clinical studies, but
also in the occupational and military operational setting.

As reported previously by our group,10 D-serine is ubiquitous
in human plasma and comprises up to 3% of total plasma serine
level in humans, with plasma D-serine elevations observed in
chronic renal failure, suggesting elimination by the kidney is
responsible for control of D-serine concentrations. D-serine is
reabsorbed in the pars recta region of the rat proximal tubule
and subsequently metabolized by D-aminoacid oxidase (D-AAO),
to produce R-keto acid, ammonia, and hydrogen peroxide.11,12

Other research has indicated that metabolism of D-serine by
D-AAO is causative for initiation of toxicity in the kidney, with
elevated levels generating selective necrosis to the pars recta
region of the renal proximal tubules in the rat.13 The choice to
use the D-Serine model was made in order to reveal both early
and sensitive biomarkers for epithelial cell injury in the kidney.

EXPERIMENTAL SECTION
Urine Samples and Materials. Animal use in this study was

conducted in accordance with the principles stated in the Guide
for the Care and Use of Laboratory Animals, National Research
Council, 1996, and the Animal Welfare Act of 1966, as amended.
Male Fischer 344 rats weighing 222-258 g were obtained from
Charles River Laboratories. Groups of five animals received a
single intraperitoneal (IP) dose of D-serine at a dose of 5, 20, or
500 mg/kg (or vehicle only -0.9% saline solution). Food (Purina
Certified Rat Chow #5002) and water was available for all animals
ad libitum. The housing environment was maintained on a 12 h
light-darkness cycle at 25 °C, and all animals were examined by
Vivarium personnel twice daily. Urine samples were collected cold
using plastic 50 mL conical tubes containing 1.0 mL of 1% sodium
azide maintained at 6-10 °C using I-Cups (Bioanalytical Systems,
Inc.; stored at -80 °C prior to use) 24 h prior to dosing and daily
thereafter, generating five 24-h intervals (0, 24, 48, 72, and 96 h
postdosing). The urine was then frozen at -20 °C and thawed on
ice prior to analysis. For the D-serine exposure set described, 104
individual samples were processed by aliquoting 1.0 mL of urine
into a 2 mL centrifuge tube and centrifuged at 13 000 rpm for 5
min at 5 °C to remove debris. The supernatant was removed using
a 1 mL tuberculin syringe and filtered through a 0.2 µm PTFE

syringe filter disk prior to aliquot transfer to two Waters Corp.
Total Recovery Vials and subsequent duplicate testing.

Instrumentation and Methods. The LC-MS system utilized
for sample analysis was a Waters Q-ToF Micro in line with a
Waters Acquity UPLC. The source temperature was set to 130
°C, a desolvation gas temperature of 320 °C and a desolvation
gas flow of 600 L/h were employed. The capillary voltage was
set at 3.2 kV for both positive and negative ion mode analysis. A
scan time of 0.4 s with an interscan delay of 0.1 s was used
throughout, and data were collected in centroid mode. A 1-µL
aliquot of filtered urine was injected onto a 2.1 × 100 mm, 1.7 µm
Acquity UPLC BEH C18 column (Waters Corporation) held at 40
°C. Retained small molecules were eluted via a linear gradient of
98% A for 2 min, 2-50% B from 2-11 min, 50-98% B over
12-12.49 min, returning to 98% A at 12.5 min and remaining there
until completion of the run at 15 min at an eluent flow rate of 0.25
mL/min; where A ) 0.1% formic acid and B ) 0.1% formic acid in
acetonitrile. The mass spectrometric data were collected in full
scan mode from m/z 80 to 1000 from 0.8 to 15 min. Urine samples
were run in duplicate and analyzed using MeDDL using spectra
from 0.8-12 min. For MS/MS data, random urine samples were
run using data dependent acquisition with multiple voltages
applied. Standards were purchased from Sigma-Aldrich (St. Louis,
MO) and run at 1 mg/mL (1 µg injection) under the same LC-MS
conditions as those of the samples to validate retention times and
MS/MS spectra. Sample analysis for determination of differential
metabolites was performed using the MeDDL tool which is
described below.

ALGORITHMS AND IMPLEMENTATIONS
MeDDL Overview. The overall goal of the MeDDL system

is to facilitate the analysis of LC-MS experimental results. With
this goal in mind, the system is structured to provide a global
view of experimental results so a user can quickly identify samples
exhibiting interesting or unusual patterns of behavior while still
having the option to probe these samples at ever finer levels of
detail. MeDDL accomplishes this by allowing the user to search
for relationships between subsets of subjects at selected times or
treatment levels. The user may ask for subsets which exhibit
specific levels of change in the behavior of the response. The user
may restrict the fold-change to positive, negative or combined
levels of changes. For example, the user can seek all peaks that
exhibited a 5-fold positive change between the control subjects
and treated subjects at 24 or 48 h. In addition, MeDDL also allows
the user to perform detailed statistical analysis including ANOVA
(1-way, 2-way, and N-way) among the selected subject groups.
The user can optionally perform multiple pairwise comparison
tests among the means of groups to determine whether or not all
differences among group means satisfy a user defined level of
significance. A Bonferroni correction is applied to compensate for
the tendency to incorrectly find a single pairwise significant
difference among multiple comparisons.

The MeDDL system is composed of two major subsystems:
peak analysis and visualization. Peak analysis encompasses several
subsidiary tasks including peak extraction, peak registration, and
extraction of registered peaks sets. The visualization system takes
the information provided by the peak analysis subsystem and
combines it with information describing the overall experiment

(9) Van Vleet, T.; Schnellmann, R. 2003; Elsevier; 500-508.
(10) Soto, A.; DelRaso, N. J.; Schlager, J. J.; Chan, V. T. Toxicology 2008, 243,

177–192.
(11) Carone, F.; Ganote, C. Arch. Pathol. 1975, 99, 658.
(12) Ganote, C.; Peterson, D.; Carone, F. Am. J. Pathol. 1974, 77, 269.
(13) Pilone, M. S. Cell. Mol. Life Sci. 2000, 57, 1732–1747.
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to allow the user to explore the results from the perspective of
the experimental parameters.

Peak Analysis Subsystem. In this section, we present a brief
overview of the algorithms that comprise the peak analysis
subsystem. As shown in Figure 1, these algorithms include peak

extraction, peak registration and peak matching. Each algorithm
is described below.

Peak Extraction Algorithm. The peak extraction algorithm
is composed of two phases. The first phase is designed to form
temporal clusters required for chromatographic time alignment

Figure 1. Schematic overview of the peak analysis subsystem. (A) Sample peak cluster extraction. (B) Sample peak cluster partition. (C)
Preliminary peak matching for registration. (D) Matched Peaks. pi,j ) <Mi,j, Ti,j, Ii,j>sapex point of extract peak with mass (Mi,j), register time
(Ti,j) and intensity (Ii,j). The behavior of each row is summarized by the average mass (Mavg,i), average registered time (Tavg,i), average intensity
(Imax,i) and a count of the number of peaks detected (Ni).

4388 Analytical Chemistry, Vol. 82, No. 11, June 1, 2010



and the second phase partitions clusters into individual peaks. A
full experiment consists of hundreds of files from different LC-MS
sample runs, each of which is identified by subject, treatment,
time, and optionally replication indices. A single LC-MS sample
is composed of a set of n measurement points P ) {pi | i ) 1, 2,
3,... n} of the form: pi ) (Mi, Li, Ii) with components of mass
(Mi), scan number (Li) and intensity value (Ii). Each scan (Li)
also has a corresponding retention time (Ti). Extracted peaks
are temporal sequences of similar mass coordinates across
multiple scans. A simple example of the algorithm for forming
peak clusters is shown in Figure 1A.

The peak extraction process is initialized by selecting a
reference point (Ma, La, Ia) with a large intensity which will
become the apex of the resultant peak bounded by a narrow
mass band. The width of the mass band is set by a mass
uncertainty parameter (∆m) specified by the user. Within this
mass-band, points are assembled into cluster sequences in both
temporal directions from the initial reference point, accepting
only one point per scan. A resultant cluster may grow to lengths
spanning many peaks.

The next step, partitioning the cluster into individual peaks,
is a difficult design problem, because it must instantiate a peak
definition that separates the significant peaks from the noisy and
uninteresting ones. Often, partitioning a cluster visually can be
difficult, so some ambiguous results are unavoidable. In other
words, if it is difficult to resolve peaks visually, it is difficult to
automate. In Figure 1B there are many small, jagged, noisy peaks
and three or four prominent peaks. The decision to extract 3 or
4 peaks is determined by adjusting a user-accessible control
parameter. In this example, a closing operator from mathematical
morphology14 has been employed to filter out unwanted peaks,
including the fourth obvious candidate. The horizontal fill-in lines
are determined by the size of the structuring element used by
the morphological operators to probe the cluster’s structure.

Peak Registration. Peak registration uses only mass and
retention time coordinates (Ma,Ta) of the peak apexes to achieve
the significant data reduction required to work efficiently across
many LC-MS samples. Peak registration primarily involves
temporal alignment of peaks, although for some instruments
the alignment of mass measurements is also required. Initially,
one of the images is selected as the reference image and all

others are transformed to match it. As illustrated in Figure 1C,
this transformation is accomplished by bracketing each peak with
a maximum shift window (∆m, ∆t) and identifying matching pairs
of peaks. Ideally, these are one-to-one unique matches, meaning
each peak has only one unique candidate match. A larger set
of candidate matched peaks can be defined by relaxing the
criteria so that only the peak in either the reference image or
alignment images has a unique matching peak. The set of
matched peaks is then used to compute a polynomial trans-
formation that maps retention times of images relative to the
reference image. The order of the polynomial is determined
by the user (eq 1).

Tr ) polyval (T, polyCoef) ) c2·T
2 + c1·T + c0... (1)

Should the need arise to make adjustments to mass coordinates
(eq 2); the set would be used to compute a bivariate alignment
polynomial.

Tr ) polyval (T, M, polyCoef) (2a)

Mr ) polyval (T, M, polyCoef) (2b)

Peak Matching. The set of matching pairs of peaks is used
to initialize a matrix of matched peaks (Figure 1D). Each column
represents one image and each row contains a set of registered
peaks. The peak coordinates (Ma, Ta) are averaged over non-
empty images in each row (Mavg, Tavg), producing a synthetic
reference image so that the original reference image is no
longer required. A number of cycles of the matching algorithm
are then used to fill in existing rows and to extend the number
of rows by seeding the reference image with peaks from the
pool of unused peaks. The coordinates of the seed peaks are
used as initial values for (Mavg,Tavg). Each iteration of the
matching algorithm produces new alignment polynomials by
pairing image peak coordinates with the evolving row averages.
A peak matches the row average if its coordinates fall within a
(∆m, ∆t) box centered on the row average, where ∆t is much
smaller than the ∆m used for prealignment matching pairs. The
final matching step, which attempts to fill in any empty slots
in the matching matrix, is accomplished by selecting the raw

Figure 2. Visualization system overview.
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data point with the maximum intensity in the (∆m, ∆t)
acceptance box as a peak substitute.

Visualization System. The visualization system is based on
the MVC (model-view-controller) software architecture pattern.15

The model is composed of a series of relational data tables that

include the registered match peak table (Figure 1D), the experi-
mental descriptor table, cluster-peak data tables and raw sample
data tables. The user interacts with the model via a graphical
interface that supports mouse and keyboard input. The com-
munication between the controller and the model is implemented

Figure 3. Example MVC (model-view-controller) interaction.

4390 Analytical Chemistry, Vol. 82, No. 11, June 1, 2010



using callback mechanisms defined in the Matlab programming
language. When the user triggers a callback event, the controller
notifies the model of the user’s action and then possibly alters
the state of the model. The view may automatically be invoked
by the controller to update some subset of displays as a result of
a change in the state of the model or the view may query the
model to generate a display based on a user request.

The user interaction with the model is organized into a
collection of filters that allow the user structured access to the
various components of the data model (Figure 2). These filters
are divided into logical categories: data, statistical, chemical, and
experimental. The data filters allow access to subsets of data that
are restricted by mass, retention time or intensity. The statistical
filters allow the user to locate statistically significant patterns of
behavior across the entire set of registered peaks. Chemical filters
allow the user to remove certain peaks from the analysis based
on chemical properties. For example, isotopic peaks or adducts
can be automatically filtered to simplify analysis. Finally, experi-
ment level filters allow the user to select items related to the
biological experiment such as treatments levels or longitudinal
studies for analysis.

The filtered data is visualized through a variety of displays.
The displays allow a multifaceted view of the data. Figure 3
demonstrates one series of filter-display interactions possible using

the visualization system. In this example, the main display opens
with a view of all registered peaks stored in a summary table along
with a heat-map. Each point in the heat-map represents the
location of a registered set of matched peaks. The position of the
point in the heat-map denotes the peak-set’s average mass and
average retention time. These correspond to the values of (Mavg,
Tavg) shown in Figure 1D. The brightness of the point is
determined by the value of the most intense peak in the registered
set (Imax in Figure 1D). As shown in Figure 3, the user can apply
a data filter to identify a smaller set of registered peaks for analysis
and then alter the view to show line plots summarizing the
behavior of several registered peaks. The user can select a single
registered peak, plot the behavior of all samples as a function of
the experimental parameters (treatment vs time), and select a
specific sample for further analysis. Additionally, the user can
explore the raw data in a 3D scatter plot with the ability to zoom-
in and zoom-out in any specified spectral region.

The MeDDL tool is freely available and the described Matlab
module will be provided upon request by the corresponding author
(claude.grigsby@wpafb.af.mil) to interested parties. The platform
independent Python code will be made available upon completion.

(14) Serra, J.; London: Academic Press, 1988.
(15) Buschmann, F. Pattern-Oriented Software Architecture: A System of Patterns;

Wiley: Chichester, New York, 1996.

Figure 4. (A) Spectra from spiked study of control F344 rat urine showing presence of nortryptyline in urine, TIC of urine sample, and TIC of
test mixture utilized in spike. (B) Nortryptyline dose response obtained via Masslynx (Waters Corporation). (C) Nortryptyline dose response
obtained via MeDDL following alignment and registration. (D) Selection of nortryptyline via MeDDL as showing >5-fold change in time versus
treatment.
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RESULTS AND DISCUSSION
To illustrate the utility and power of MeDDL in the visualization

of large, multigroup experiments, we analyzed data from an
LC-MS effort for profiling low level kidney biomarkers in the
F344 rat model. Importation of the raw QToF MS data files and
subsequent analysis of the aligned and registered peak database
by MeDDL identified numerous metabolic changes in the urine
of the animals after D-Serine treatment compared to control
animals. Registration and processing of the D-serine exposure data
(n ) 208) utilizing peak inclusion criteria requiring each m/z at
a given retention time be present in a minimum of 5% of all
samples was accomplished in 122 min. A smaller sample set of n
) 20 was similarly registered and processed in 12 min to establish
scalability, with all analysis performed utilizing a dual core 2.53
GHz CPU with 6 GB of RAM. This alignment and registration
encompassed all detectable peaks, with absolute intensity values
as low as 30 being registered (background level previously
established by our group for the QToF Micro).

To verify the accuracy of the registration and analysis algo-
rithms, a spiked study of control F344 rat urine was performed
(Figure 4A) using a purchased metabolite test mixture of five
known compounds (Waters Corporation Metabolomic Test Mix).
An artificial dose response was generated as shown below (Table
1) and examination of nortryptyline (m/z 264.1752), the highest
intensity standard in this set, via Masslynx (Waters Corporation)
generated the response illustrated in Figure 4B (below). Following
processing by MeDDL, nortryptyline was registered by the
software generating an identical response curve to that manually
determined in the vendor supplied instrument control software
(Figure 4C). Analysis of the spiked data utilizing the previously
described fold change filter for all masses showing a 5-fold change
across time for a given dose showed inclusion of nortryptyline
(Figure 4D). Accuracy in both the ability of the software to
perform correlations as well as in peak registration can be
demonstrated through correlation of adducts and isotopes in the
aligned peak database, which also allows for their easy visualiza-
tion and elimination as candidate biomarkers.

As described, twenty separate groups (4 doses × 5 time points)
totaling 208 samples were analyzed. Following alignment and
registration of the D-serine exposure data, more than 4000 isotopic
peaks were originally registered and matched prior to automated
deisotoping via MeDDL. During this process the isotopes were
identified after peak matching was complete. The location (Mavg-

,Tavg) of each synthetic peak was used to initiate a search for
monoisotopic peaks. For a given peak, a search was conducted
to located monoisotopic peaks by looking for a peaks at location
(Mavg+ 1,Tavg) (Mavg + 2,Tavg) and (Mavg + 3,Tavg). A match

was found if a peak was located within the region defined by
(Mavg + 1 ( ME,Tavg ( TE) where ME and TE is a user specified
limit on mass and retention time variation between isotopic
peaks. Once a potential isotope is identified, the intensity of
the actual extracted peaks (main peak and isotopic peak) in
each image is compared to verify that the isotopic peak has a
decreasing level of intensity. If all peaks in the set and their
corresponding isotopic peaks satisfy this requirement, then the
isotopic peaks are tagged and can be hidden/removed by the
user. A similar process is used to locate doubly and triply
charge isotopic peaks and tag them for removal.

One of the novel aspects of the MeDDL peak alignment
process is the use of a two stage process that begins with a rough
peak match where only a few isolated peaks are identified between
a reference image and each unregistered image. These initial
peaks are used to compute a polynomial transformation between
the reference image and the unregistered image producing a
rough alignment. This is essentially a global process that handles
systematic misalignment between images. In the peak matching
phase, alignments are refined through a process similar to
relaxation labeling.16,17 After the rough alignment, a synthetic
image is created by taking each image in turn and using every
peak in the image as the center of a peak acceptance region. Any
peak in any other image captured within the acceptance region
is matched to this peak. The average mass and retention time
(Mavg, Tavg) across the set of peaks is computed as (Mavg, Tavg).

(16) Rosenfeld, A.; Hummel, R.; Zucker, S. IEEE Trans. Systems, Man Cybernet.
1976, 6, 420–433.

(17) Wu, Q. IEEE Trans Pattern Anal. Mach. Intel. 1995, 17, 843–853.

Figure 5. (A) Principal component analysis of LC-MS data for all
experimental animal groups of the study. Legend is on the right of
the figure. (B) Principal component analysis of LC-MS data for 0, 5,
20, and 500 mg/kg doses at 24 h only.

Table 1. List of Spiked Standards (Waters Corporation
Metabolite Test Mix) Added to F344 Control Urine
Utilized in Software Validation Study As a Synthetic
Dose Response

theophylline caffeine
hippuric

acid
4-nitrobenzoic

acid nortryptyline

0 h 0 pg 0 pg 0 pg 0 pg 0 pg
24 h 750 pg 750 pg 750 pg 375 pg 281 pg
48 h 3.75 ng 3.75 ng 3.75 ng 1.88 ng 1.41 ng
72 h 375 pg 375 pg 375 pg 188 pg 141 pg
96 h 750 pg 750 pg 750 pg 375 pg 281 pg

4392 Analytical Chemistry, Vol. 82, No. 11, June 1, 2010



Initially, the acceptance region is very small so peaks that were
not well-aligned by the polynomial function will not be matched.
The relaxation process slowly opens the size of the acceptance
region to attempt to draw in one peak from each image. Each
time a new peak is captured within the acceptance region, the
average (Mavg, Tavg) is recalculated. Thus, the acceptance region
gradually shifts and coalesces to maximize the number of
matched peaks across all images at the final value of (Mavg,
Tavg). This combination of global alignment/local refinement
allows the matching to respond to both systematic misalign-
ments as well outliers that appear as random variations within
individual images. Additionally, although MeDDL accurately
aligned all data generated by our laboratory, the retention time
variation observed with the Waters Corp. Acquity UPLC was
minimal (<0.25 min). As such, alignment was achieved through
the use of a second order polynomial and our two stage peak
alignment process. During development, our group evaluated
use of higher order functions; however, we deemed it unneces-
sary for our use. This can be easily modified to be a user
editable feature through the software interface if necessary for
other chromatography systems.

During the analysis of the exposure data, two of the primary
tools included in the MeDDL platform were utilized by our group,
principal component analysis18 (PCA), and a novel fold change
filter. The design of the fold change filter analysis is based on a
multilevel statistical model that views the behavioral response
(intensity) of each synthetic peak as a normally distributed random
with the added assumption that the behavior of peaks within
individual images is correlated. On the basis of this underlying
statistical model, the system is designed to handle longitudinal
data sets consisting of subjects exposed to multiple levels of
treatments. The statistical models are designed to allow the user
to perform statistical tests for significant differences between
treatment levels, significant differences between treatment time
points, or significant differences between any combination of
treatment levels or time points. In future applications, if other
analysis tools become required, MeDDL is easily expandable
through its use of the MVC software architecture, previously
described. This software architecture allows a programmer to
extend the functionality of the system as follows (1) add a new

(18) Richmond, B.; Optican, L.; Podell, M.; Spitzer, H. J. Neurophysiol. 1987,
57, 132.

Figure 6. Examples of selected peak plots of negative (A) and positive (B) changes after 500 mg/kg D-Serine exposure.
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choice to any pull-down menu in system menu, (2) install a new
callback for the menu item that invokes a user defined function,
and (3) create a new user function (userFunction.m). The user
code added to userFunction.m has full access to all Matlab
libraries (e.g., image processing, signal processing, pattern
recognition, statistics, etc.) and full access to the summary data
describing the matched peaks, the full description of every peak
in a matched set and the raw data for every image. This allows a
programmer/user to add new functionality to the system without
altering the existing functionality.

PCA was performed for all groups of study animals and is
shown in Figure 5. The PCA plot demonstrates clear separation
between sample dosage and time groups with the majority of
metabolomic changes in urine observed at 24, 48, and 72 h post
treatment with 500 mg/kg D-Serine. The number of peaks that
undergo at least a 2-fold change is 19× higher for the 500 mg/kg
dose than the 5 mg/kg dose, with the changes literally disap-
pearing at 96 h, most likely indicating kidney recovery.

At 24 h postdosing for the 500 mg/kg group, as many as 426
peaks show a greater than 2-fold change with the peak intensity
cutoff set to a minimum of 100. Although the 2-fold increase was
established based on our goals of identifying differential yet
detectable metabolite biomarker profiles, the fold change filter
incorporates detailed statistical analysis including ANOVA (1-way,
2-way, and N-way) among the selected subject groups. The user
can optionally perform multiple pairwise comparison tests among
the means of groups to determine whether or not all differences
among group means satisfy a user defined level of significance.
A Bonferroni correction is applied to compensate for the tendency
to incorrectly find a single pairwise significant difference among
multiple comparisons. Further, five metabolite peaks exceeded
100-fold change with the same intensity threshold. It is worthy to
note that a number of peaks exhibit a statistically significant
change while their intensities are relatively low, with most of these
peaks demonstrating negative changes in our analysis. Examples
of negative and positive changes are shown in Figure 6. We have
excluded isotopic peaks in our data analysis; however, some
percentage of differentiated peaks can be attributed to adduct
acquisition by metabolites as well as water loss. Thus, the
difference of 18 mass units between peaks 1569 and 1598; 952
and 246; 1642 and 1532; 1697 and 1664; and 3277 and 42 strongly
suggest a water loss with each set of ions eluting from the column
concurrently.

Metabolite identification is currently in progress with a list
of potential metabolites shown in Table 2. Purchased metabolite
standards were run under the same LC conditions followed by
MS/MS as selected samples. Matching retention times and
MS/MS fragmentation data generally indicate the conclusive
identification of a metabolite, which has been demonstrated in
a candidate biomarker identified in this study, 3-indolylacetic
acid. The MS/MS spectrum of 3-indolylacetic acid along with
a spectrum from rat urine samples is shown in Figure 7. This
figure also demonstrates the ability of the MeDDL to automate
spectral normalization. In MeDDL, normalization begins by
computing the mean (m1, m2, m3,...) and standard deviation
(s1, s2, s3,...) of the values of all subjects in each treatment
group at the first time point. The peak intensity value ps(t)
for each subject s in group j at time t is then normalized as

follows: (pi(t) - mj)/sj. This effectively shifts all the plots so
the mean value of the first time point in each treatment group
is zero (see Figure 7C).

CONCLUSIONS
The data clearly demonstrate dramatic changes in the

urinary metabolic profile in response to the kidney toxicant,
D-Serine. A list of potential metabolites corresponding to masses
identified in urine of rats is presented. D-Serine metabolomic
profiling demonstrates that most changes occur between 24-72
h. The most dramatic changes occur at the 24-h time point after
exposure to 500 mg/kg D-Serine. The data suggests that near-
normal kidney function resumes at 96 h. Metabolite identifica-
tion of selected peaks from the study is currently in pro-
gress.

Although the ability to visualize the experiment at all levels
may constitute the authors’ ideal for biomarker discovery and
differential metabolite analysis, we feel it adds considerably to
this effort by allowing the user to differentiate metabolite
profiles in a large time-dose study while maintaining the ability
to focus on individual metabolites and spectra for subsequent
identification. The overall framework was rapidly prototyped
using MathWork’s Matlab software language and is being
translated to the general purpose, platform independent lan-
guage, Python, to support wide dissemination of the tool. The
MeDDL tool dramatically reduced manpower costs in our
research by providing scaffolding for the rapid development
and verification of new algorithms without the need to create
a large amount of supporting software. MeDDL also offered
the potential for staff scientists to visualize data in new ways,
providing novel insight into the experimental results and
facilitating metabolomic biomarker discovery. It should be

Table 2. List of Potential Metabolites (Shown as m/z)
Identified in Urine of Rats after 500 mg/kg D-Serine
Exposure at 24 and 48 h after the Exposurea

m/z retention time treatment x time p-value

521.2412 9.071536 3.31 × 10-5

523.2543 10.508634 8.04 × 10-5

491.2421 7.5071826 1.44 × 10-4

501.2701 9.916751 1.74 × 10-4

714.1853 1.6265737 2.22 × 10-4

611.3051 10.67593 2.60 × 10-4

609.2873 9.332852 5.72 × 10-4

567.2799 10.59735 7.30 × 10-4

613.3242 11.733243 9.17 × 10-4

383.1925 4.111277 0.00169446
779.352 1.4149536 0.00176583
290.1256 1.469668 0.00190476
655.3292 10.74838 0.00203854
435.159 10.100951 0.00356158
589.3217 10.138795 0.00407047
479.2284 10.405753 0.0055822
701.3726 11.777291 0.00567922
326.1946 9.491132 0.00787954
553.2582 4.0478706 0.01769215
633.3461 10.232473 0.01919617
212.1025 1.1299926 0.02197477
330.0621 2.3208911 0.02478929
533.1005 4.628623 0.04081653
511.2622 4.253147 0.04097449
290.1258 1.7111521 0.04116634

a Fold change filter set at 10 fold and higher.
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noted that a number of tools have recently been proposed in
the literature, which show great advancements in metabolomic
and LC-MS analysis capability.19-24 However, the MeDDL tool,
through its emphasis on visualization, provides unique op-
portunities by combining the following: easy use of both
GC-MS and LC-MS data; use of both manufacturer specific
data files as well as netCDF (network Common Data Form);
preprocessing (peak registration and alignment in both time

and mass); powerful visualization tools; and built in data
analysis functionality.
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Figure 7. Identification of a selected metabolite. Retention times and MS/MS fragmentation of 3-Indolylacetic acid is shown for standards
along with corresponding ms/ms from D-Serine urine samples in A. Not normalized (B) and normalized (C) plots show changes for 3-Indolylacetic
acid throughout the course of D-Serine study.
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